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SUMMARY

A ®nite volume±element formulation of the Navier±Stokes equations for compressible ¯ows is applied to the
transient shock tube problem. A second-order spatial quadrature for volumetric integration is studied because of
its effects on the shock wave resolution and positioning. Low quadrature order is shown to produce solution
anomalies in regions with a transonic character as well as poor predictions of shock wave propagation. The
second-order volumetric quadrature includes the proper upstream and downstream solution behaviour and
eliminates both the transonic and shock speed errors in the transient shock tube problem. # 1997 by John Wiley
& Sons, Ltd.
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INTRODUCTION

The overall strategy of modern computational methods for compressible ¯ows presents a dif®cult

dilemma. Most numerical methods begin with the differential equations for conservation of mass,

momentum and energy and discretize these equations by ®nite differences,1,2 elements3,4 or

volumes.5,6 The schemes will then re®ne the discrete model to return and approach the original ®ne-

scale equations. However, the original differential equations appear unnecessary in a sense, because

the algebraic equations may be derived by an application of conservation principles to discrete

control volumes.

The role of subgrid (i.e. subelement or subvolume) approximations inherent in the models presents

a question. Should the model incorporate a coarse grid (in relative terms) with high subgrid

quadrature accuracy or a ®ne grid with low subgrid quadrature accuracy? In particular, previous

researchers have presented limited treatments of subgrid quadrature effects on compressible ¯ow

phenomena, i.e. shock wave propagation.

For example, a `zero energy mode' problem associated with low-order quadrature may lead to a

singular stiffness matrix in ®nite element analysis. In this problem a non-zero response throughout the

element (i.e. non-zero energy ¯ow) except at the quadrature points (i.e. line of symmetry) may lead to

a singular stiffness matrix which would preclude a solution.7

In compressible ¯ows the continuity equation acts as a transport equation for the gas density.

Subgrid quadratures for the transient effects must yield the correct solution behaviour in different
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¯ow regimes. For instance, the character of the transport equation must be elliptic in the subsonic

regime and hyperbolic in the supersonic regime. Limited treatments of the former transient effects

have been presented in the literature, because as grid re®nement is effected, the quadrature analysis

becomes less critical in the model. However, the quadrature error must remain less than the

discretization error in order to ensure the scheme's order accuracy.

In this paper the details of a second-order volumetric quadrature are presented and the effects on

solution accuracy are examined. The volumetric quadrature includes both subelement and element

node in¯uences to eliminate pressure oscillations in the transonic region and enhance the scheme's

shock-capturing capabilities.

2. PROBLEM FORMULATION

The governing equations for viscous compressible ¯uid ¯ow and heat transfer are the Navier±Stokes

equations
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The components of the stress tensor and heat ¯ux vector are
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where m (kg m71 s71) is the kinematic viscosity and k (W m71 K71) refers to the thermal

conductivity. This `momentum ¯ux' formulation determines the conserved quantities ~F (i.e. the

momentum ¯ux r~v). The `primitive' variables �r; u; v; e; p; T ) can be decoded from the momentum

¯ux variables:

r � F1; uÿ F2

F1

; v � F3
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; e � F4
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: �8�
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For an ideal gas the equations of state specify the pressure and temperature ®elds

p � �gÿ 1�r�eÿ 1
2

u2 ÿ 1
2
v2�; �9�

T � �eÿ 1
2

u2 ÿ 1
2
v2�=cv; �10�

where g and cv refer to the gas constant and speci®c heat respectively. In this `density-based'

approach, density remains the subject of the continuity equation and the equation of state extracts the

pressure ®eld. Advantages of density-based schemes in comparison with pressure-based schemes (i.e

pressure is the primary variable in the continuity equation) have been investigated by previous

researchers such as MacCormack2 and McGuirk and Page.6 The motivation for the former approach

was the explicit appearance of density in the continuity equation and the dominant role of spatial

density variations in compressible ¯ows.

DISCRETIZATION OF GOVERNING EQUATIONS

The problem domain is subdivided into linear quadrilateral elements and a local non-orthogonal (s; t)

co-ordinate system is de®ned in each element (Figure 1(a)). The discrete conservation equations are

obtained by integration of the continuum equations (1) over ®nite control volumes and time intervals.

Each control volume is de®ned by further subdivision of four internal or subcontrol volumes (SCVs)

within an element, each of which is associated with a control volume and its corresponding element

node. The subcontrol volume boundaries or subsurfaces (SSs) are coincident with the element

Figure 1. (a) Finite element±volume, (b) quadrature and (c), (d) shock tube schematics
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exterior boundaries and with the local co-ordinate surfaces de®ned by s � 0 and t � 0. An integration

point (ip) is de®ned as the midpoint of each subsurface.

Finite element shape functions N �s; t� are used to relate global co-ordinates Xi (local node i) and

scalar values Fi to local element values X �s; t� and F�s; t� respectively in an isoparametric, bilinear

fashion8

F�s; t� �P4
i�1

Ni�s; t�Fi; X �s; t� �P4
i�1

Ni�s; t�Xi; �11�
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and the subscripts i � 1; 2; 3; 4 refer to local nodes.

For SCV1 within the shaded control volume (Figure 1(a)), equations (1) may be integrated to yield

the integral conservation laws
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The vector ~F consists of advection, ~Fa, and diffusion, ~Fd, parts for each conserved quantity F and SF
represents the source vector. Integration over the time interval Dt � tn�1 ÿ tn yields the equations
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where J1 is the SCV1 area. The control volume (node n) equation will be completed when each

element SCV contribution is assembled into the global equations. In the present numerical scheme

the advection terms are approximated with an integration point model8 and bilinear shape function

interpolation is employed for the pressure and diffusion terms. The ®rst two transient terms in (14)

require consideration of the quadrature for the spatial averages.

TRANSIENT TERM QUADRATURE

Many classical interpolation quadrature formulae evaluate the de®nite integral
�

V
rF�t�dV by a ®nite

sum
Pn

i�1 rwni�F�~xni�, where wni are weight factors and ~xni are quadrature points (or Gauss points). If

the Gaussian quadrature is exact for orthogonal polynomials with degree n (i.e. 1; x; x2; . . . ; xn�, then

its order of accuracy is o�h2n�, where h represents an element length. For example, exact integration

of a constant requires an o�h� rule (i.e. one Gauss point at a node) and exact integration of a line

requires an o�h2� rule (i.e. two Gauss points or one Gauss point along each element subsurface). The

weights and their locations for ®rst-order and second-order quadratures for the ®nite volume±element

geometry are illustrated in Figure 1(b).

The selection of a quadrature rule involves the question of cost and accuracy. If the quadrature

accuracy is too low (i.e. ®rst-order), then the quadrature error will exceed the discretization error (i.e.

second-order convection model) and adversely affect the solution accuracy. If the quadrature order is

too high (i.e. third-order), then the quadrature error is much less than the discretization error and the

additional computational effort would be wasted, because the overall accuracy would be limited by
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the discretization error. The effect of both ®rst-order and second-order models on compressible ¯ow

simulations will be examined through the following shock tube problem.

SHOCK TUBE PROBLEM

The shock tube problem consists of a constant area duct with a length L� 1 m and a diaphragm at

x� 0�5 m which initially divides the tube into a low-pressure region, P1� 101�3 kPa, and a high-

pressure region, P2� 1032 kPa (Figure 1(c)). After the sudden removal of the diaphragm a contact

surface (temperature ®eld discontinuity) and normal shock wave propagate into the low-pressure

region and rarefaction waves propagate in the opposite direction (Figure 1(d)). In the numerical

simulations a direct banded algebraic solver with single-precision accuracy on a Sun 486 Sparcstation

was employed.

Figure 2. Shock tube problem (t� 0�56 ms): (a) velocity, (b) pressure, (c) grid re®nement and (d) volumetric quadrature results
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The results from transient simulations to t� 0�56 ms with a ®rst-order quadrature are illustrated in

Figures 2(a) (velocity) and 2(b) (pressure). In each simulation (Figure 2(b)), pressure oscillations

appear in the vicinity of the initial contact discontinuity and the shock wave. Since the shock wave

and expansion waves move at supersonic and subsonic speeds respectively, a ®rst-order quadrature

which approximates volume averages at one node may lack the correct upstream and downstream

in¯uences in transonic regions (i.e. initial contact discontinuity region). In other words, a ®rst-order

approximation in a control volume near the initial discontinuity will overestimate the local velocity

(i.e. lack of upstream subsonic in¯uences) and hence underestimate the gas pressure (Figure 2(b)).

It is anticipated that this anomaly will diminish as grid re®nement is effected. Figure 2(c) illustrates

the reduction of pressure solution error (i.e. average pressure level between diaphragm and shock

locations minus exact result) with grid re®nements (26 30, 26 60, 26 120 and 26 240 grids).

Figure 2(c) shows that the approximate quadratic reduction of solution error (i.e. nearly 2:1 slope)

with grid size suggests a second-order formulation accuracy.

Figure 2(d) illustrates the effects of quadrature error on the contact surface resolution and the shock

speed. Both ®rst-order and mixed-order (i.e. ®rst-order at time level n� 1 and second-order at time

level n) schemes yield pressure oscillations near the initial contact interface (Figure 2(d)). However, a

second-order model with an identical grid resolution (26 120 elements) and Courant±Friedrich±

Lewy number (CFL� 0�24) captures this interface without oscillatory deviations from the exact

results (Figure 2(d)). Therefore the results indicate that the second-order quadrature improves the

adverse effects of slow shock wave speed and pressure undershoots associated with ®rst-order

approximations.

The important of proper upstream and downstream in¯uences in the accuracy of subgrid

convection models is well known in the literature. The present work indicates that these in¯uences

can also play an important role in transient term approximations. A ®rst-order volumetric quadrature

represents the central node in¯uence. However, a second-order quadrature with a conventional

backward difference includes upstream and downstream integration point in¯uences as well as

central node in¯uences and therefore permits more accurate predictions of shock wave speed and

pressure pro®les in transonic regions.

CONCLUSIONS

A ®nite element formulation of the Navier±Stokes equations for compressible ¯ows has been applied

to the transient shock tube problem. First- and mixed-order quadratures produce solution anomalies in

regions with a transonic character as well as inaccurate predictions of the shock wave propagation.

However, the results indicate that the inclusion of a second-order transient model improves the shock

and rarefaction wave resolution and positioning because of the correct upstream and downstream

in¯uences in the numerical quadrature.
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APPENDIX: NOMENCLATURE

c speed of sound (m s71)

CFL Courant±Friedrichs±Lewy number, cDt=Dx

t time (s)
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x, y Cartesian co-ordinates

Greek letters

f integration point ®eld variable

F nodal ®eld variable

Subscripts

i integration point

n degree of accuracy

Superscripts

n previous time level

n� 1 current time level
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